博客
关于我
机器学习-无监督学习-聚类:聚类方法(三)--- 谱聚类算法
阅读量:225 次
发布时间:2019-02-28

本文共 535 字,大约阅读时间需要 1 分钟。

谱聚类算法是一种基于图论的无监督学习方法,通过构建拉普拉斯矩阵并利用其特征值和特征向量来实现数据的降维和聚类。以下是对谱聚类算法的详细描述:

  • 谱和谱聚类

    • :方阵的所有特征值的全体统称为方阵的谱。谱半径是最大的特征值,而谱聚类则是基于拉普拉斯矩阵的特征向量进行聚类的方法。
  • 拉普拉斯矩阵

    • 拉普拉斯矩阵L = D - W,其中D是度矩阵,W是相似度矩阵。
    • 度矩阵D中的元素d_i表示样本点x_i与其他样本点的相似度之和。
    • 相似度矩阵W中的元素w_ij表示样本点x_i与x_j的相似度。
  • 计算特征值和特征向量

    • 对拉普拉斯矩阵L计算特征值,并从中选择前k小的特征值。
    • 对应每个选中的特征值,计算其特征向量,将这些特征向量组成矩阵U。
  • 生成新样本点

    • 将矩阵U的每一行作为新的样本点,生成n*k个新样本点。
    • 这些新样本点将用于后续的k-means聚类。
  • k-means聚类

    • 使用k-means算法对新生成的n*k个样本点进行聚类,得到k个聚类簇。
    • 每个聚类簇对应原始数据中的一个簇。
  • 输出聚类结果

    • 最终输出k个聚类簇,每个簇包含属于该簇的样本点集合。
  • 通过以上步骤,谱聚类算法能够有效地将高维数据映射到低维空间,并利用k-means算法完成聚类任务,从而实现数据的有效降维和聚类。

    转载地址:http://ltzp.baihongyu.com/

    你可能感兴趣的文章
    NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
    查看>>
    NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
    查看>>
    NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
    查看>>
    NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南002---大数据之Nifi工作笔记0069
    查看>>
    NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
    查看>>
    NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
    查看>>
    NIH发布包含10600张CT图像数据库 为AI算法测试铺路
    查看>>
    Nim教程【十二】
    查看>>
    Nim游戏
    查看>>
    NIO ByteBuffer实现原理
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NIO三大组件基础知识
    查看>>
    NIO与零拷贝和AIO
    查看>>
    NIO同步网络编程
    查看>>
    NIO基于UDP协议的网络编程
    查看>>
    NIO笔记---上
    查看>>
    NIO蔚来 面试——IP地址你了解多少?
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>