博客
关于我
机器学习-无监督学习-聚类:聚类方法(三)--- 谱聚类算法
阅读量:225 次
发布时间:2019-02-28

本文共 535 字,大约阅读时间需要 1 分钟。

谱聚类算法是一种基于图论的无监督学习方法,通过构建拉普拉斯矩阵并利用其特征值和特征向量来实现数据的降维和聚类。以下是对谱聚类算法的详细描述:

  • 谱和谱聚类

    • :方阵的所有特征值的全体统称为方阵的谱。谱半径是最大的特征值,而谱聚类则是基于拉普拉斯矩阵的特征向量进行聚类的方法。
  • 拉普拉斯矩阵

    • 拉普拉斯矩阵L = D - W,其中D是度矩阵,W是相似度矩阵。
    • 度矩阵D中的元素d_i表示样本点x_i与其他样本点的相似度之和。
    • 相似度矩阵W中的元素w_ij表示样本点x_i与x_j的相似度。
  • 计算特征值和特征向量

    • 对拉普拉斯矩阵L计算特征值,并从中选择前k小的特征值。
    • 对应每个选中的特征值,计算其特征向量,将这些特征向量组成矩阵U。
  • 生成新样本点

    • 将矩阵U的每一行作为新的样本点,生成n*k个新样本点。
    • 这些新样本点将用于后续的k-means聚类。
  • k-means聚类

    • 使用k-means算法对新生成的n*k个样本点进行聚类,得到k个聚类簇。
    • 每个聚类簇对应原始数据中的一个簇。
  • 输出聚类结果

    • 最终输出k个聚类簇,每个簇包含属于该簇的样本点集合。
  • 通过以上步骤,谱聚类算法能够有效地将高维数据映射到低维空间,并利用k-means算法完成聚类任务,从而实现数据的有效降维和聚类。

    转载地址:http://ltzp.baihongyu.com/

    你可能感兴趣的文章
    MySQL – 导出数据成csv
    查看>>
    MySQL —— 在CentOS9下安装MySQL
    查看>>
    mysql 不区分大小写
    查看>>
    mysql 两列互转
    查看>>
    MySQL 中开启二进制日志(Binlog)
    查看>>
    MySQL 中文问题
    查看>>
    MySQL 中日志的面试题总结
    查看>>
    mysql 中的all,5分钟了解MySQL5.7中union all用法的黑科技
    查看>>
    Mysql 中的日期时间字符串查询
    查看>>
    MySQL 中锁的面试题总结
    查看>>
    MySQL 中随机抽样:order by rand limit 的替代方案
    查看>>
    MySQL 为什么需要两阶段提交?
    查看>>
    mysql 为某个字段的值加前缀、去掉前缀
    查看>>
    mysql 主从
    查看>>
    mysql 主从 lock_mysql 主从同步权限mysql 行锁的实现
    查看>>
    mysql 主从互备份_mysql互为主从实战设置详解及自动化备份(Centos7.2)
    查看>>
    mysql 主从关系切换
    查看>>
    mysql 主键重复则覆盖_数据库主键不能重复
    查看>>
    Mysql 优化 or
    查看>>
    mysql 优化器 key_mysql – 选择*和查询优化器
    查看>>